Upcoming ION Seminars



A fundamental challenge to understanding the brain is its complexity: its genetic and developmental programs, its neurons and connections, its balance of permanence and plasticity, and the nuanced information flow through its networks. Across biology, emerging technologies are revolutionising the scope and scale at which we can address such questions. Our group has developed technologies for studying brain-wide sensory networks using calcium imaging and house-built light-sheet microscopes. Because zebrafish larvae are small and transparent, we can image tens of thousands of neurons, simultaneously and individually, as animals perceive and respond to sensory stimuli. We have used this approach to produce the first functional maps, brain-wide at cellular resolution, for auditory, vestibular, and water flow perception in a vertebrate. Our lab and others have also used such baseline descriptions as a departure point for exploring altered sensory networks in zebrafish models of neuropsychiatric conditions such as autism.
These imaging studies have taught us where and when neurons are active, but not how or why. In this talk, I will review our calcium imaging approaches and results, and will then discuss how other technologies, such as X-ray diffraction, electron microscopy, and spatial transcriptomics can provide complementary information about the structure and function of brain-wide networks. I will present preliminary data using these platforms and discuss the enormous potential that such combined approaches hold, but also the technical challenges that merging these big-data modalities presents.

2025 UO Undergraduate Research Symposium
Undergraduates, register by April 17, 2025 to present!

Abstract - The superior colliculus (SC) is an evolutionarily conserved structure that receives direct retinal input in all vertebrates. It was the most sophisticated visual center until the neocortex evolved in mammals. Even in mice and tree shrews, mammalian species that are increasingly used in vision research, the vast majority of retinal ganglion cells project to the SC, making it a prominent visual structure in these animals. In this talk, I will review our recent functional studies of the mouse SC and describe our current efforts in linking functional properties to genetically identified cell types in both mice and tree shrews.

This academic year will host a series of virtual and in person seminars with live, remote access via Zoom. ION Seminars are open to the University of Oregon community and in person attendance is welcome. In person seminars will be held in Willamette 110 at 4 PM PT where both attendees and speakers are required to follow University of Oregon guidelines for preventing the spread of COVID-19. Please visit coronavirus.uoregon.edu for more information.
To accommodate remote speakers and time differences, some seminars may be offered at Noon PT or another agreed upon time. For students taking BI 407/507 Neuroscience Seminar please contact the course instructor to access recordings as needed.
Details for upcoming seminars will be shared here on the ION website as well as through our ION mailing lists. Links for remote access via Zoom will be available only through ION Seminar mailing list and those not on the list can request access by contacting Jenna Penny with their uoregon.edu email address.